Molecular Medicine Meets CIRS James Ryan, PhD Progene DX LLC jryan@progenedx.com

Disclosures

James Ryan is a principal in Progene DX, a company that sells the transcriptomic test called GENIE

Gene ExpressioN: Inflammation Explained

Basics – Why are cells different

- 1. Our bodies are made of tissues, cells organized for a common function
- 2. Cells derive their function by differential gene expression
- 3. Although some cells are highly specialized, e.g., neuron vs epithelial cell, they all use the same basic machinery, e.g., ribosomes, mitochondria.

Specialized function

- Cells derive their purpose by differential gene expression – HOWEVER – it's the translation of genes into proteins that give each cell its character
- 2. Transcription and translation have several regulatory mechanisms to control the fate of a cell.

Central Dogma of Molecular Biology

Post Transcriptional Control (Transcript degradation)

Eukaryotic Ribosomes

- Protein biosynthesis
- Made of 2 subunits: Eukaryotes 40S and 60S
- Functional unit referred to 80S ribosome in 5M ribosomes/cell, 25% of cell's dry mass
- Mass of ribosomes is roughly $1/_2$ RNA

Conserved Evolution

Sarcin-Ricin Loop (SRL)

- 1. All living organisms need to make protein
- 2. Regardless of species, ribosomes must read the messenger RNA codons, bind proper charged transfer RNAs, join amino acids and then move to the next codon
- 3. These highly specific requirements lead to what is one of the most highly conserved sequences in all living organisms – Sarcin-Ricin loop of ribosomal RNA

Translation Inhibition

- Dunbar et al, C. elegans Detects Pathogen-Induced Translational Inhibition to Activate Immune Signaling. (Cell Host & Microbe 11, 2012)
- McEwan et al, Host Translational Inhibition by Pseudomonas aeruginosa Exotoxin A Triggers an Immune Response in Caenorhabditis elegans (Cell Host & Microbe 11, 364-374, 2012)

"Here we show that *P. aeruginosa* infection inhibits mRNA translation in the intestine via the endocytosed translation inhibitor Exotoxin A...

Thus, translational inhibition, a common pathogenic strategy, can trigger activation of an immune surveillance pathway to provide host defense"

Ribosomal Control of Cell Fate

- Ribosomes were long thought to be homogeneous nanomachines
- Recently, ribosomes were found to have different subunit compositions based on tissue in animal models
- Ribosomes were also found to have subunit heterogeneity according to developmental stages – embryogenesis

Ribosomal Control of Cell Fate

- Now we understand ribosome subunit heterogeneity can preferentially translate certain transcripts.
- Additionally, there are hundreds of proteins that interact with the ribosome, potentially tuning preferences even further.
- Do CIRS patients show ribosome heterogeneity?

Post Transcriptional Control (Ribosomal selection – IRES)

Ribosomal Control of Cell Fate

Do CIRS patients show ribosome heterogeneity?

MitoRibo Large Subunit - CV

Subunit	CV
MRPL	0.14
MRPL	0.15
MRPL	0.15
MRPL	0.20
MRPL	0.15
MRPL	0.16
MRPL	0.21
MRPL	0.16

MitoRibo Small Subunit - CV

Subunit	CV
MRPS	0.14
MRPS	0.15
MRPS	0.16
MRPS	0.20
MRPS	0.20
MRPS	0.17
MRPS	0.16

Ribosome Large Subunit - CV

Subunit	CV
RPL	0.40
RPL	0.35
RPL	0.34
RPL	0.33
RPL	0.31
RPL	0.29
RPL	0.29
RPL	0.27
RPL	0.26

Ribosome Small Subunit - CV

Subunit	CV
RPS	0.41
RPS	0.39
RPS	0.38
RPS	0.34
RPS	0.33
RPS	0.27
RPS	0.25
RPS	0.23

Correlations to Ribosome Decline

- What else happens when ribosomal gene expression declines in CIRS?
- Other parts of the metabolic panel also fall
- After mitochondrial panels, T cell markers are the most impacted

Ribosomes Sorted t-test - B lymphocytes

Gene	CD79a	CD79b	CD81
Delta Z	1.23	1.34	1.12
P value	4.9E-01	5.1E-02	2.3E+00

Ribosomes Sorted t-test - T lymphocytes

Gene	CD3D	CD127	CD25	CD4
Delta Z	1.95	1.32	1.23	-0.19
P value	4.8E-08	8.2E-04	4.4E-02	5.7E-01

Ribosomes Sorted t-test - Other

Gene	CD14	CD40LG	CD48	CD52
Delta Z	-1.31	1.13	2.17	1.96
P value	2.6E-03	1.2E-01	5.0E-06	1.4E-08

Cellular Decline

- Molecular hypometabolism decreased transcriptional output (IF on GENIE).
- A plethora of triggers can act at different points on the path of a transcript becoming a protein.
- Quiescence
- Senescence

Ribosomes Over Rx

Altitude vs Trajectory

GENIE REPORT - Gene Expression:Inflammation Explained

1) Metabolism Ratio for metabolic gene families compared to normal controls. 1 equals control value.

GENIE REPORT - Gene Expression:Inflammation Explained

1) Metabolism Ratio for metabolic gene families compared to normal controls. 1 equals control value.

Altitude vs Trajectory

GENIE REPORT - Gene Expression:Inflammation Explained

GENIE REPORT - Gene Expression:Inflammation Explained

The Molecular Arc of CIRS

- Microbial toxin exposure leads to ribosomal damage by ribotoxins and ribosomal inhibitory proteins, among others.
- Additionally, microbial genotoxic products can damage transcription efficiency, also reducing transcriptional output.
- Removal of toxins corrects the above deficiencies, but now the patient has to play catch up on output that was marginalized.

Conclusions

- Untreated CIRS patients showed a marked down regulation of ribosomal genes, which control basic metabolic activities.
- While molecular hypometabolism can lead to innate immune activation, the time to ribosomal rebound will be different for different cases.
- Heterogeneity in ribosomal subunits for CIRS patients may be leading to preferential translation of stress specific mRNA transcripts.